104 research outputs found

    YOUMARES ā€“ A Conference from and for YOUng MARine RESearchers

    Get PDF
    YOUMARES is an annual early-career scientist conference series. It is an initiative of the German Society for Marine Research (DGM) and takes place in changing cities of northern Germany. The conference series is organized in a bottom-up structure: from and for YOUng MARine RESearchers. In this chapter, we describe the concept of YOUMARES together with its historical development from a single-person initiative to a conference venue of about 200 participants. Furthermore, the three authors added some personals experiences and insights, what YOUMARES means to them

    YOUMARES 8 ā€“ Oceans Across Boundaries: Learning from each other

    Get PDF
    This open access book presents the proceedings volume of the YOUMARES 8 conference, which took place in Kiel, Germany, in September 2017, supported by the German Association for Marine Sciences (DGM). The YOUMARES conference series is entirely bottom-up organized by and for YOUng MARine RESearchers. Qualified early career scientists moderated the scientific sessions during the conference and provided literature reviews on aspects of their research field. These reviews and the presentersā€™ conference abstracts are compiled here. Thus, this book discusses highly topical fields of marine research and aims to act as a source of knowledge and inspiration for further reading and research

    YOUMARES 9 - The Oceans: Our Research, Our Future

    Get PDF
    This open access book summarizes peer-reviewed articles and the abstracts of oral and poster presentations given during the YOUMARES 9 conference which took place in Oldenburg, Germany, in September 2018. The aims of this book are to summarize state-of-the-art knowledge in marine sciences and to inspire scientists of all career stages in the development of further research. These conferences are organized by and for young marine researchers. Qualified early-career researchers, who moderated topical sessions during the conference, contributed literature reviews on specific topics within their research field

    Proteomic fingerprinting enables quantitative biodiversity assessments of species and ontogenetic stages in Calanus congeners (Copepoda, Crustacea) from the Arctic Ocean

    Get PDF
    Species identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1ā€“C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone. Differentiation of the three species based on mass spectrometry data was without any error. In addition, a clear stage-specific signal was detected in all species, supported by clustering approaches as well as machine learning using Random Forest. More complex mass spectra in later ontogenetic stages as well as relative intensities of certain mass peaks were found as the main drivers of stage distinction in these species. Through a dilution series, we were able to show that this did not result from the higher amount of biomass that was used in tissue processing of the larger stages. Finally, the data were tested in a simulation for application in a real biodiversity assessment by using Random Forest for stage classification of specimens absent from the training data. This resulted in a successful stage-identification rate of almost 90%, making proteomic fingerprinting a promising tool to investigate polewards shifts of Atlantic Calanus species and, in general, to assess stage compositions in biodiversity assessments of Calanoida, which can be notoriously difficult using conventional identification methods

    Cascading effects of calanoid copepod functional groups on the biological carbon pump in the subtropical South Atlantic

    Get PDF
    Life strategies, ecophysiological performances and diel vertical migration (DVM) of zooplankton key species affect the efficiency and strength of the biological carbon pump (BCP). However, it is unclear to what extent different functional groups affect the BCP. Depth-stratified day and night samples (0-800 m) from the subtropical South Atlantic were analyzed focusing on the calanoid copepod community. Calanoid abundance, biomass distribution and species-specific impact on the passive (fecal pellets) and active (via DVM) vertical flux of carbon were determined. Species were assigned to different migrant groups where, their contributions were estimated by using the proportion of the migratory community instead of simple day-night differences in biomass. This novel approach leads to more robust flux estimates, particularly for small sample sizes. According to migration ranges and day/night residence depth, functional groups were characterized, i.e. small- and large-scale epipelagic and mesopelagic migrants. Epipelagic small-scale migrants transported respiratory (1.5 mg C m-2 d-1) and fecal pellet (1.1 mg C m-2 d-1) carbon from the upper to the lower epipelagic zone, where the latter can fuel the microbial loop, and thus deep chlorophyll maxima, or be ingested by other zooplankton. Large-scale migrants actively transported up to 10.5 mg C m-2 d-1 of respiratory carbon from the epipelagic layer into the twilight zone. The majority was transported by Pleuromamma borealis (5.7 mg C m-2 d-1) into the upper mesopelagic. In addition, up to 8.0 mg C m-2 d-1 was potentially egested as fecal material by large-scale zone shifters. Mesopelagic migrants transported respiratory (0.2 mg C m-2 d-1) and fecal pellet carbon (0.1 mg C m-2 d-1) even deeper into the ocean. Community consumption of migrants in the epipelagic layer during the night was 98 mg C m-2 d-1, while non-migrants consumed 98-208 mg C m-2 d-1 in the epipelagic zone, with a potential subsequent egestion of 29-62 mg C m-2 d-1. This carbon may fuel omnivorous-detritivorous feeding, the microbial loop and/or may sink as fecal pellets. This case study shows how calanoid functional groups mediate carbon fluxes in the subtropical South Atlantic Ocean and demonstrates how detailed community analyses can elucidate the complexity of pelagic carbon budgets

    CO2 mediation of adverse effects of seawater acidification inCalcidiscus leptoporus

    Get PDF
    The coccolithophore Calcidiscus leptoporus (strain RCC1135) was grown in dilute batch culture at CO2 levels ranging from similar to 200 to similar to 1600 mu atm. Increasing CO2 concentration led to an increased percentage of malformed coccoliths and eventually (at similar to 1500 mu atm CO2) to aggregation of cells. Carbonate chemistry of natural seawater was manipulated in three ways: first, addition of acid; second, addition of a IICO3-/CO32- solution; and third, addition of both acid and IICO3-/CO32- solution. The data set allowed the disentangling of putative effects of the different parameters of the carbonate system. It is concluded that CO2 is the parameter of the carbonate system which causes both aberrant coccolithogenesis and aggregation of cells

    Determination of the in vivo structural DNA loop organization in the genomic region of the rat albumin locus by means of a topological approach

    Get PDF
    Nuclear DNA of metazoans is organized in supercoiled loops anchored to a proteinaceous substructure known as the nuclear matrix (NM). DNA is anchored to the NM by non-coding sequences known as matrix attachment regions (MARs). There are no consensus sequences for identification of MARs and not all potential MARs are actually bound to the NM constituting loop attachment regions (LARs). Fundamental processes of nuclear physiology occur at macromolecular complexes organized on the NM; thus, the topological organization of DNA loops must be important. Here, we describe a general method for determining the structural DNA loop organization in any large genomic region with a known sequence. The method exploits the topological properties of loop DNA attached to the NM and elementary topological principles such as that points in a deformable string (DNA) can be positionally mapped relative to a position-reference invariant (NM), and from such mapping, the configuration of the string in third dimension can be deduced. Therefore, it is possible to determine the specific DNA loop configuration without previous characterization of the LARs involved. We determined in hepatocytes and B-lymphocytes of the rat the DNA loop organization of a genomic region that contains four members of the albumin gene family

    Transformation-induced changes in the DNA-nuclear matrix interface, revealed by high-throughput analysis of DNA halos

    Get PDF
    In higher eukaryotic nuclei, DNA is periodically anchored to an extraction-resistant protein structure, via matrix attachment regions. We describe a refined and accessible method to non-subjectively, rapidly and reproducibly measure both size and stability of the intervening chromatin loops, and use it to demonstrate that malignant transformation compromises the DNA-nuclear matrix interface
    • ā€¦
    corecore